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Requirements & Assumptions 

•  Requirements 
–  Deliver a 20 MT payload  
–  Land at 0 km MOLA altitude 
–  Land within 1 km of target, with confidence of 99% 

•  Assumptions 
–  Payload is resupply for a human mission 
–  Entry uncertainties no better than MSL 
–  Northern hemisphere, 40-60 degrees west longitude 
–  Intersect Mars sphere of influence @ 3.317 km/s 
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Trades Studied 

•  Entry Mode 
–  Direct Entry from interplanetary trajectory 
–  Aerocapture into Mars orbit, with subsequent entry from orbit 

•  Vehicle Shape 
–  Blunt body flown at angle of attack (L/D = 0.23) 
–  Slender body flown at angle of attack (L/D = 1.0) 

•  Supersonic Deceleration 
–  Inflatable Aerodynamic Decelerator 
–  Propulsion 
–  Parachutes 

•  Configuration that provided the most timeline margin was selected 
as baseline 
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Baseline Design: Mission Overview - Aerocapture 
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Baseline Design: Mission Overview - Entry 
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Design Structure Matrix (DSM) 
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Baseline Design: Configuration 

•  Aeroshell 
–  70 deg sphere-cone 
–  14 m diameter 

•  Supersonic IAD 
–  Inflatable torus with tension 

membrane 
–  25 m diameter 
–  Gas-generator & Ram-air inflation 

•  Masses 
–  Aerocapture:  78.6 MT 
–  Entry:   70.8 MT 
–  Landed Mass:  50.1 MT 
–  Payload:   20.0 MT 



Baseline Design 9 

Skycrane Landing System 

•  Overview 
–  Heritage derives from MSL 

Skycrane 
–  Descent stage delivers payload 

module according to timeline 
•  Advantages 

–  Scalable to a large payload 
–  Direct payload delivery eliminates 

extraction complications 
–  Exhaust interaction with surface 

reduced 
–  Landing gear mass eliminated 

•  Notable Features 
–  Payload underside protected by 

crushable aluminum honeycomb 
–  LSASS/PALS LIDAR altitude/

attitude sensor 

Payload 

Descent Stage 
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Methodology—Trajectory 

•  3 degree-of-freedom simulation with bank angle modulation, 
assuming: 

•  Spherical planet 
•  Gravity effects are only radial 
•  Thrust force applied to vehicle oriented in any direction 
•  Atmosphere defined by Seiff 
•  Winds defined by Kaplan 

•  Aerocapture 
–  Exo-atmospheric flight modeled assuming two-body motion 
–  Flight assumed to be fully lift-up 

•  Entry 
–  Triggers for changes in vehicle configuration 
–  Propulsive terminal descent guidance targeting sites within 1 km 

of designated landing target for minimum propellant expenditure 
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Baseline Trajectory 

•  Nominal entry trajectory 
–  14 m diameter aeroshell 
–  Initial state 

•  V=3.5 km/s 
•  γ=-11.5º 

–  25 m diameter IAD inflation 
•  M=5.0 
•  h=15 km 

–  Guided propulsive descent (tIAD+25 s) 
•  Backshell and IAD jettison 
•  M=2.0 
•  h=10 km 

•  Nominal aerocapture trajectory 
–  Initial state 

•  V=5.9 km/s 
•  γ=-8.5º 

–  Minimum altitude of 58 km 
–  Depletes 59% of the vehicle’s energy 
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Heating Performance 

•  Heat rates are relatively low 
due to aerocapture and entry 
from Mars orbit, enabling the 
use of existing qualified TPS 
SLA-561 

•  Transition to turbulence not 
modeled; 40% margin added to 
TPS mass 

•  Aerocapture heat shield is 
jettisoned after its use to 
prevent heat soak back into the 
entry vehicle 

Entry Heating at Stagnation Point 
Peak Convective Heat Rate 19.67 W/cm2 
Altitude at Peak Convective Heat Rate 26.3 km 
Peak Radiative Heat Rate 3.13 W/cm2 
Altitude at Peak Radiative Heat Rate 16.0 km 
Integrated Heat Load 1,752.4 J/cm2 
Entry TPS Mass + 40% Margin 468.72kg 

Aerocapture Heating at Stagnation Point 
Peak Convective Heat Rate 18.03 W/cm2 
Altitude at Peak Convective Heat Rate 53.8 km 
Peak Radiative Heat Rate 0.08 W/cm2 
Altitude at Peak Radiative Heat Rate 51.8 km 
Integrated Heat Load 1,723.3 J/cm2 
Entry TPS Mass + 40% Margin 473.20 kg 
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Weights and Sizing 

•  Mass Estimating 
Relationships 
–  Mars Science Lander 
–  Historical MER database 

•  Propulsion System Sizing 
with REDTOP-2 

•  IAD sizing with material areal 
density & surface area, plus 
estimate of associated 
hardware 

•  TPS sizing used material 
densities, estimation of 
ablated mass, and stagnation 
point TPS thickness 

# Element Mass 
1.0 Body 15,790 kg 
2.0 Entry Heat Shield 2,028 kg 
3.0 Terminal Descent & Landing  1,918 kg 
4.0 Avionics 165 kg 
5.0 Power Supply and Distribution 764 kg 
6.0 Propulsion 892 kg 
7.0 Dry Mass Margin (40%) 8,623 kg 
8.0 Dry Mass 30,181 kg 
9.0 Payload 20,000 kg 
10.0 Landed Mass 50,181 kg 
11.0 Landing Propellant 17,712 kg 
12.0 Inflatable Aerodynamic Decelerator 3,000 kg 
13.0 Entry Mass 70,893 kg 
14.0 Deorbit & Circ Propellant 5,085 kg 
15.0 Aerocapture Heat Shield 2,704 kg 
16.0 Aerocapture Mass 78,683 kg 
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Uncertainty Analysis - Aerocapture 

•  500 Case Monte Carlo 
•  System sized to accommodate 

in-space delta-V requirement 
for worst case including: 
–  Periapsis raise 
–  Apoapsis raise 
–  Deorbit 
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Uncertainty Analysis – Entry 

•  500 case entry Monte 
Carlo Simulation 

•  Position error at Mach 5 
IAD deployment is 25 km 
in semi-major axis 
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•  Altitude error at Mach 5 
IAD deployment is +/- 2 km 

•  Hypersonic guidance, not 
used in this simulation, can 
reduce these errors 
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Proposed Testing and Qualification Program 

•  Wind Tunnel Test  
–  Scale vehicle model in different IAD configurations 

•  Scaled Rocket Testing 
–  Deploy scale model of vehicle from a sounding rocket at high altitude 

and Mach number to simulate entry 
•  Balloon Drop Testing 

–  Deploy full-scale model of vehicle from a sounding rocket, first carried 
by a balloon, at high altitude and Mach number to simulate entry 

•  Radiative Lamp Testing 
–  Supersonic wind tunnel used in combination with radiative lamps to 

simulate entry conditions experienced by IAD materials 
•  Arc-plasma Jet Testing 

–  Test coupons of TPS material at high enthalpy conditions similar to 
entry 

•  Gantry Testing 
–  Skycrane supported by gantry will be tested for stability and controller 

robustness 
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Conclusions & Future Work 

•  This baseline design meets the stated requirements: 
–  20 MT Payload 
–  0 km MOLA 
–  Accommodates errors in aerodynamic, atmospheric, entry state, 

and mass parameters with 99% confidence  
•  Performance benefits of using IADs are significant.   
•  Propulsive terminal guidance can be very important in meeting a 

landed accuracy requirement 
•  Utilize an optimizer in an integrated environment to achieve better 

performance, optimizing trajectory and configuration 


